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Abstract--The accuracy of the approximate expression given by Ranger (1978) for the force exerted by a 
two-phase Stokes flow on a sphere which symmetrically straddles the interface, is examined analytically 
and shown to depend critically on the ability of the surface tension or gravity forces to resist deformation 
of the interface. 

1. I N T R O D U C T I O N  
The motion of a particle moving in the presence of a free fluid-fluid interface is of considerable 
importance and interest in chemical engineering science. The general motion of an arbitrary 
particle in the presence of such a free interface is exceedingly complex and several simplifying 
assumptions are necessary to render analytical solutions possible. One such is to assume that 
the surface tension forces are able to resist deformations of the interface and hence to replace 
the normal stress condition by one specifying the shape of the interface. This is effectively used 
for droplets but in the current context becomes less acceptable as the body is placed closer to 
the interface. The exception considered by Ranger (1978) is a disk lying in a planar interface 
and moving parallel to it, for in this case the normal stresses are identically zero and no 
distortion of the interface can occur. 

Compared with a sphere straddling the interface, the choice of the disk circumvents the 
major dilficulty arising from the occurrence of a normal stress discontinuity in a region 
containing a stagnation point. In the same paper, Ranger suggests that an axisymmetric Stokes 
flow past the sphere can provide a useful approximation to the two phase flow but does not 
consider in detail its accuracy. This paper aims to rectify this omission by considering 
perturbations with respect to the fractional viscosity difference defined in the next section. In this 
way it is expected to obtain information concerning how the original Stokes flow and planar 
interface are changed by increasing from zero the viscosity difference. A density discontinuity is 
also introduced into the two basic flows, stagnation and streaming, which are considered here. For 
the symmetrically placed sphere, exact solutions of the equations of motion are sought in terms of 
toroidal coordinates for the first order perturbation fields when the surface tension and/or gravity 
forces are strong or weak. The stabilizing effect of these folces is amply demonstrated and the 
dominant presence of at least one is found to be necessary for Ranger's force approximation to be 
accurate. It is shown that no exact solution of the assumed form exists for the streaming motion in 
the limit of zero surface tension and identical densities, a plausible result in the absence of any 
"restoring" mechanism capablb of restraining the "deforming" mechanism of the viscous stresses. 

2. F O R M U L A T I O N  OF THE P R O B L E M  

On choosing Cartesian coordinates Oxyz, with the z-axis directed vertically upwards, let 
v0(x, y, z) be a Stokes flow of a uniform fluid of viscosity /~ such that the plane z--0 is 
stress-free. Since the gravitational acceleration -g£  can be accounted for by suitably modify- 
ing the pressure p(x, y, z), the above mentioned flow field Vo is unchanged by the introduction of 
a density discontinuity A( > 0) at the plane z = 0. Also, this flow field is further unaffected when 
the viscosity is changed to /~  --/~(I + A) in z > 0 and/~2 =/~(I - ,t) in z < 0 (Davis etal. 1975), 
where the parameter 

~t = ~1  - ~ 2  [1]  
/ t l  + / t 2  

361 



362 A.M.J. DAVIS 

is evidently such that I;tl < 1. Note here that if values of less than ~ may be regarded as small, 
the corresponding range of the viscosity ratio is ½ < tzl//z2 < 2. 

Now suppose that this two-fluid flow is distorted by the introduction of a fixed rigid sphere 
which may be placed anywhere, though positions near or straddling the plane z = 0 provide the 
greatest interest. The resulting flow is such that the interface is no longer at z = 0 and its 
detailed calculation is of considerable complexity. Some indications of the effects of introduc- 
ing the viscosity discontinuity can be obtained by constructing the first order solution for each 
choice of Vo and position of the sphere, in a perturbation scheme based on the ,~ = 0 but A ¢ 0 
case. 

Suppose that the introduction of the sphere into the flow Vo of two fluids of uniform 
viscosity/z but different densities results in a flow qo(x, y, z) in which z = Zo(X, y) is the stream 
surface such that z0-:,0 as x 2 + y 2 ~ .  The velocity field qo satisfies the no-slip condition at 
fixed boundaries and is asymptotic to Vo at large distances. Writing the pressure p(x,  y, z) in the 
form 

p = ~P [2] 

throughout, the creeping motion equations satisfied by qo and the corresponding Po are 

div qo = 0, grad Po = V2qo • [3] 

The possibility that the convective terms become significant at large enough distances is ignored 
here because only the dominant features of the flow near the sphere are sought. 

The first order perturbation scheme involves writing the velocity and pressure fields in the 

form 

q(J) = qo + .Aql ~), pO) = Po + APl  (j) (j = 1 , 2 )  [4] 

for each fluid of viscosity t% whilst the interface is given by 

z = zo(x, y) + M(x,  y). [51 

Then the boundary conditions at the interface, including surface tension forces, are linearised 
about z = Zo, which procedure requires the assumption that the first derivatives of f are also of 
order unity. The condition that the plane z = 0 be stress-free in the flow v0 ensures that 

fix, y) ~ constant as x2+ y 2 ~ .  

The elementary choices of Vo considered in this paper are a double-sided axisymmetric 
stagnation flow and a uniform flow. For these, the length scale of the perturbed flows is 
determined by the radius of the sphere, which for convenience is taken to be unity. It is also 
convenient to always choose the origin so that the centre of the sphere lies on the z-axis. Then, 
on introducing cylindrical polar coordinates (p, d~, z), the above flows v0 take the forms 

6) Vo = Vz2 - ½ Vp[~, 

(ii) Vo = V-L 

(iii) Vo = Vz~ - ½ V[(x - Xo),~ + y~] 

= - + Wo . 
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Case (ii) is the uniform flow, whilst cases (i) and (iii) are respectively the stagnation flow with 
axis centrally placed at p = 0 or off-centre at the line x = Xo, y = 0. In order that the plane z = 0 
remain stress-free when the viscosity discontinuity is introduced, it is necessary in cases (i) and 
(iii) that a uniform pressure difference 2(tzl-/~2)V be maintained between the fluids of 
viscosities/Zl,/~2. Evidently case (iii) may be regarded as a superposition of cases (i) and (ii). 
Also, since the length scale is unity, the constant V is the velocity scale in all three cases. 

3. THE SYMMETRICALLY PLACED SPHERE 

The position of the sphere, which offers the best chance of constructing a mathematical 
analysis of the problem stated in the previous section, is that in which its centre is at the origin. 
Then the flows (qo, Po) are given for the two principal cases by 

(i) 

qo = ( Vz~. - ½ Vp/~) [ 1 - 5 + 3 ] 2(p 2+ Z2) 3/2 2(p 2+ Z2)5/2J 

15 Vz 
+ 4(p2 + Z2)5,2 (p2~, - zp/~) (1 - p - y - ~ )  

Po = V ( 2 -  5 + 15p 2 
(p2.4_ Z2)3/2 2(p2 dr. Z2)512] 

[6] 

(ii) 
1 

qo = V~[I  3 Y2 + Z2)3/2 ] -- 2(X2 + y2 + Z2)112 -[" 2(X2 + 

3 V [(y2 + Z2)~ -- x(yy + ZZ)] (1 1 z2 ) 
+ T (X2 + y2 + Z2)312 -- X2 + y2 + 

3Vx 
Po = - 2(X2 + y2 + Z2)3/2. 

[7] 

In each case qo~ is an odd function of z but qox, qoy and Po are even in z. In terms of spherical 
polar coordinates (r, 0, ~) these expressions may be written: 

(i) 
5 3 

qo = Vr~(1-2--~+2--~)P2(cosO)-3--~O(r-~)sinOcosO 

Po = V ( 2 - ~ P 2 ( c o s  0)). 

(ii) 

qo-- V? ( 1 - ~ r  + 2-~)sin 0 cos ~b + V ( 1 - 3 - 4 - ~ ) ( 0 c o s  0 cos ~b-~s in  ~b) 

3 V .  
Po - - 2 -P  s m  0 c o s  ~, 

where P2 denotes a Legendre polynomial. It then readily follows that in the two-fluid flow, the 
zero order velocity field qo exerts on the sphere a force 3~r(~l-/~2)V~ in case (i) and a force 
3~r(/Zl +/a~z) V~and torque ~'(/~t - It2) Vy in case (ii). 

Proceeding to consider the first order perturbations introduced by [4] and [5], it may first be 
noted that since z = 0 is a plane of symmetry in the flows qo given by [6] and [7] and the 
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direction of the gravitational force cannot be reversed without also changing the sign of A, the 
position of the interface must be an odd function of A, i.e. 

z = •f(p,  4~)+ 0(,9). [81 

The unit normal to the interface is then given by 

O f ^ h a ~  = _~-A ~pp p - p ~  4; + O(A2). [9] 

Linearisation about z = 0 enables the values of the velocity and stress components and the 
pressure to be written in terms of those at the undistrubed interface. Thus, e.g. to order A, 

q(p, (;b, Af(p,~))= q(p, ~), O)+ ~ (p, (;b, O)Af(p, (;b). [10] 

In this way it becomes possible to apply all the interface conditions at the plane z = 0, a known 
location. 

The continuity of the velocity components requires that 

ql(Z)=qj (2), at z = 0 ,  p >  1. [11] 

Further, since the velocity normal to the interface must be zero in the steady solution 
considered, the OUt) terms in the equation q • ti = 0 imply that 

q~i)+fdq0z a/ 1 a/ az ap q ° P - p ~ q ° ~ = O  ( j= l .2 )  a t z = 0 ,  p > l .  

[12] 

The stresses acting across the interface are, in either fluid, 

- ,~ ~ (o- M + ~r~ + O~,,~) 

p a~ 

in standard notation. In the zero order flow, ~% and %~ vanish at z = 0 so the introduction of 
the viscosity discontinuity into this flow causes only a normal stress discontinuity, namely 

aZ Jz=o dZ Jz=o 

This is the one feature which prevents the interface from remaining at the plane z = O, the 
position it takes in the absence of the sphere. On equating the normal stress discontinuity to the 

surface tension force, the O(A) terms require that 

- [ P , ( ' ) -  P,(2)]~- o + 2 [ - Po + aqoz 1 _ 2 - ~ z  J~=o 

+ y I a 2 f . 1  af , 1 a_~f'~ Ag . la, ~ ~p "- p ap r -~ adp ] - ----~ j = O (p > l) [13] 



TWO PHASE STOKES FLOWS DISTORTED BY ̂  SPHERE STRADDLING THE INTERFACE 365 

where 3' is the surface tension coefficient and the gravitational term has appeared because the 
unmodified pressure must be inserted in the normal stress expression. The term 0[q~(~) - q~]/Oz¢2) 
does not contribute to [13] because div q/S)= 0 and the tangential components of velocity are 
continuous. The stipulation, in section 2, that the flow Vo be stress-free at z = 0, is necessary to 
ensure that the second term in [13] tends to zero as p->oo. Finally the continuity of tangential 
stress, to order A, at the interface, requires that o-p~ and ~r~ be continuous at z = 0, to this order, 
i .e .  

°~ r ~ ( I ) _  _(2) 1 0 r~O) -(2)1 > 1 [14] ~ [ . L / I  p ¢ l l p z = 0 ,  ~zLql~--Cll~j----O at z=O, p 

The interface conditions [11]-[14] complete the specification of the first order perturbation 
fields ql °3, p o) (j = 1, 2) which must satisfy Stokes equations [3] and have zero velocity on the 
sphere and at infinity. Of the two conditions involving f, the inhomogeneous one [13] shows that 
the solution is a function of the parameters /~V/3" and I~V/Ag which determine the relative 
contribution of the perturbation field, surface tension and gravity to the counterbalancing of the 
normal stress discontinuity in the zero order flow q0. The dimensionless parameter ~V/3" is a 
possible meaning of the term Capillary Number and measures the ratio of viscous and surface 
tension forces. The parameter/~V/Ag has dimension [L 2] and therefore must be expressed in 
terms of the radius a of the sphere which is the length unit adopted here. Equivalently pV/Aga 2 
is a dimensionless parameter which measures the ratio of viscous and gravity forces and is the 
product of the above mentioned Capillary Number and one of several possible definitions of 
Weber Number. The nomenclature quoted here appears in the extensive listings of the 
Handbook of Chemistry and Physics (1979). 

The three obvious approximations to consider are: 
(a) it V/ 3" ~ 1, Ag/ 3" ~ 1; dominant surface tension. 
Here the first term of [13] is neglected and f(p, O) is determined directly from the zero order 

flow. Since then f = O(/~V/3"), this approximation indicates the accuracy of the commonly made 
assumption that surface tension forces are large enough to hold the position of the interface 
against the effects of a discontinuity in normal stress. With f determined, subsequent sub- 
stitution in [12] yields prescribed values at z - -0  of qm~ from which ql ~ must evidently be of 
order/~ V2/% 

(b) t~ V/ A g ~ 1, Ag/ 3, >> 1; gravity dominant. 
This case is similar to (a) with f = O(I~V/Ag) and the gravitational forces are large enough to 

restrict the effects of a normal stress discontinuity on the position of the interface, ql °3 is here 
of order/~IF/Ag. 

(c) izV/ 3" >> 1,/~V/Ag >> 1; viscosity dominant. 
Here the third term of [13] is neglected and only viscosity effects are retained in the 

calculation. Then q O~ is of order V and is determined independently of f which is subsequently 
found from [12] as the solution of a differential equation. 

On substitution of [6] and [7], the interface conditions [12] and [13] involving f become, in 
the two cases, illustrated by figure 1: 

(i) 

[( ')] V d  2 5 + ~_~p 
q1°~+~pp~pp p - ~ p  f =0  ( j=  1,2) at z = 0 ,  p >  I [15] 

9V y d / df'~ A_._g_. [P'("-P/2)]~=o=--'~"+~'~--~p ~P~"~p]- /~ I (P> 1) [16] 

since, evidently f = f(p). 
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(i) 

(ii) 

Figure 1. The flow patterns in cases (i) and (ii). 

(ii) 

+li!f 
P a4 ( I--$-& 

> 
sinb=O (j=1,2) at Z=O,p>l iI71 

Since these are the only inhomogeneous conditions on the velocity and pressure fields q,“‘, 

P,(j) (j = 1,2), it follows that 

4’:!(P, 4, - 2) = dAP? 49 z): P,‘VP, 4, - 2) = - PI’YP, 4, f) [I91 

for all points such that z > 0, r > 1. The continuity equation then yields 

&!(P, 4, - z) = - 411p’(P, 9, zh 4Q(P, 4, - 2) = - di!gp, 44 zh (2 > 0, r > 1). m 

The tangential stress conditions [14] are identically satisfied but the continuity of velocity 
condition [ 111 requires that 

q$$=O=qQ (j=1,2) atz=O, p>l. [211 
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Thus the problem is reduced to finding qt (z), p(z) such that the velocity vanishes on the 
sphere and the tangential velocity components vanish at the interface, where the normal 
velocity and pressure take related non-zero values. 

4. CONSTRUCTION OF THE SOLUTION 

An axisymmetric velocity field can be written in terms of a stream function 4,: 

q=cur l  ~ = ~ 0 a 0  rsinO`gr 

where 

+---rr- ~ (si--~-~ ~ )  ] 4, = 0 [22] 

and the pressure is related to the vorticity by 

`gP 1 O 1 OP 1 a (L_~4,). [23] 
" ~ = ] 2 - f f ~  (L-I~) '  r`9-O = r s inOar  

The no slip condition requires that ~b = (OdOr) = 0 at r = 1 and the force exerted by the fluid on 
the hemisphere r ~< 1, 0 <~ 0 ~< ½~r is 

2 ~rlt, ~ fo"t2 ( -  P cos O + ~ ) ,= sin O d O. 

The pressure integral can be rewritten by applying Green's theorem to the harmonic functions P 
and r -2 cos 0 in the region r > 1, 0 ~< 0 ~< ½~" and using [23] to write 

`gP sin 0 (._~),=1 9̀ [`924,~ 
= a - -F / r= , "  

The above force expression becomes 

,/2 024, 
- ~ , '  [3 fo (o-~),=sinOdo-fz®(P)o=½.~] . 

In terms of cylindrical coordinates (p, ~b, z), the above representation of q in terms of 4, is 

1 q = c u r l ( ~ )  p [  az ap 9̀4, O~b£]j = - 72_ ,~ + --:- [24] 

where 

9̀2 l__a+ 02~ 2 
L2-'4,= ~-~p-p`gp ~~z,/ 4 , = 0  

g̀ P 1 0  g̀ P 1 ,9 
. . . .  `gz (L_I 4,), w = _ _  (L_I 4,). [25] `gp p `gz p `gp 

Thus either [19] or [20] implies that any axisymmetric component of q o) has a stream function 
4, m which is such that 

4,(2)(p, _ Z) = 4,(I)(p~ 2') (Z > 0, r > 1) [26] 
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O~j (j) 
Oz =0 a t z = 0 ,  p > l  ( j=l .2) .  [271 

The force exerted on the sphere by this component is given by 

F=~r(Izl+/~2)'~'L Jo \ O--~]r=J s i n O d O -  [28] 

In the last integral, the pressure is given in approximation (b) but in case (a) must be eliminated 
by integrating by parts and using [25] which together with [27] implies that 

oP(l)~ I [031]/(1'~ 

-V-o ,==o = - ~ C ; T ~  L_o 

Hence an alternative form of [28] is 

r r "~/2/020m\ d O _ ~  ~ {a3Om'~ 1(1 1 
F=2zr/xz[3J0 t ~ ) , = ,  sin0 \ ~ ] . . = o p  - p )  do] [291 

For the fully axisymmetric flow in case (i), qj(J~= curl ((l/o)6(J~) (] = 1,2) and the interface 
condition [151 simplifies to 

¢,,,, = _ ~v(o~ Z + 3~i - 2p 2p 3] (j = 1,2) at z = 0, p > I [30] 

For the non-axisymmetric velocity fields, a representation suitable for spherical boundaries 
is that used by Brenner & Davis (1981), namely 

Q,. = curl2[*,.(r, 0) cos rn~bF] + curl [X,. (r, 0) sin m~b~] 

/02*" )~ m4+ 1 (o2*,.+mX,.'~ 
= ~ 7 -  H,.*m cos r \--~-0 si--m--o]/~ cos mS 

_ l ( r  sinm 0 O'mar ~-~0m) ~ sin m~b 

Pm = COS m,b O H, .*"  (m 1) 

where the operator H,. is given by 

m 2 

and the functions *,. ,  X" satisfy 

H,.X,,, = 0 = H,,,2*,,, (m >! 1) 

[311 

[321 

[33l 
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The operator H~ is related to the Stokes operator L_~ by 

( ) 1  
H~ ~ =si--ff~L-~@ 

and hence [22] is equivalent to 

369 

The no-slip condition on Qm requires that 

&r 
= Xm = 0 a t  r = 1 [35 ]  

Equations [20] show that components of qi ° of the form Qm must be such that 

~ma)(r, ¢r - O) = - xitm(I)(r, 0),  Xm (2) (r, ~r - O) = Xm{t)(r, O)(r > 1,0 <~ 0 <~ ~r) [36] 

The conditions [21] that the tangential components of q~<~ vanish at the interface then imply 

m--~- -  + - - ~ -  = o 
(j  = 1 , 2 )  a t  0 = ½~r, r > 1. [ 37 ]  

Since the pressure is given explicitly in terms of ~,. in [31], the stress ¢~,tJ~ exerted by the 
fields {Q,.(i), P,.u~} on the sphere can, in contrast to the axisymmetric case, be expressed as 
derivatives of ~m °~ and Xm °, namely 

& ] m OX,~°~I - 
trm~)= #J --~HMt'mO r=, iCOS m ~ + / ~  [ 0---~-~ sin 0 ~-r Jr=t Oc°s m~ 

82~m~i ~ 82X,~ Ci~] m 
- m  sinO Or 2 + ~ J , = l  ~psinmdp(j=l,2,m>~l). 

Clearly fields with m 1> 2 exert zero net force and torque on any cap of the sphere with axis at 
0 = 0, ~r. The force exerted by ¢~"~ on the hemisphere r ~< 1, 0 ~< 0 ~< !lr is 

A f~n [ _ ~ r H , ~  O~si n [a3xltl tl) 1 aXl~"~ 
w~,Xjo O+[d---rr~÷sinO ~-~ / c o s 0  

{ 1 a2'o,', "~ &2X,"~] 
+ ~,si-~-T;- + a--;~-Ll,=, sin o dO. 

On writing down the similar expression for the force exerted by ¢t2~ on the hemisphere r ~< 1, 
~r ~< 0 ~< ~r, and using the relations [36], it follows that the force exerted on the sphere by a 
component AQ~tJ> of ,~q t/~ is of order A 2 and therefore negligible in the present approximation. 
In considering the torque T~ exerted by ¢ci~ on the sphere, the leading contributions from the 
two hemispheres add and the result is 

2 g' HI (si--~)=O [34] 
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TI -- ¢r(/'/'l + ~2))3 ~ ~/2 [ ( 1 aO sin 0 a-Trr-- + o - - f f~ )  c°s 0 + a--fl-~ + -  02XI/1(1) 02XI(I) '~  03XI/l(l) 
1 OX( l)] 

sin0 Yr j,: sin O dO 

L - - Y ? - J o +  + ,o \ - ~ r / , : ,  
r =  ] 

sin 20 d0}. [38] 

The integral over the hemispherical surface can be transformed into one over the undisturbed 
interface z = 0 by applying Green's theorem to the functions r-IX1 °) and r -2 sin 0 in the region 
r/> 1, 0 <~ 0 ~< ½7r. Then, since 

( 2  l ) X~ ~l~ 1 
V -~s.~mO r ..... rsmO' L-t [X~ ~1~ sin O] -r- 1 HI(XI,~) = 0, 

according to (4.12), and 

2 1 (7  - ~ ) s i n 0  - - y  = 0, 

it follows, in virtue of [35], that 

f f 2  [ OXI~] \--~r /,:, sin20 dO = fl ~ ( o00XJ~l~) o=½~ 7"dr 

Thus an alternative form of [38], which will be simpler to evaluate is 

rio2% "~] T, = 2¢r/zi U-T p L=,-2f  [OX,""~ do) 
V3T-  )z oT/ 

z=0 

1391 

Since the solutions Xm, ~/m of [33] must satisfy conditions at the sphere and at the 
"interface",  their construction requires the use of a coordinate system in which the hemis- 
pherical surfaces r = 1, z X 0 and the plane region z = 0, r > 1 belong to the same family of 
coordinate surfaces. Hence introduce toroidal coordinates by writing 

or, equivalently 

sinh ~¢ sin r/ 
z - [40a] 

P - cosh ~: - cos r/' cosh ~ -  cos r/ 

[cosh ~: + cos r/'~ ~n sinh 
tan 0 = . [40b] r = \cosh ~:- cos 9 /  ' sin 

Then, with the interface linearised at "0 = 0, the fluids of viscosity p-m,/x2 occupy respectively 
the regions ~:~>0, 0 ~  < r/~<~Tr, - ~" < ~b ~< 7r and ~>~0, -~¢r<~ "O <~0, - ¢r < ~b ~< 7r. 

For each integer m >/0, it may be shown that 

xl/2 cosh S Kra Hm[(cosh~+cosn )  ,i., n ~ ( cosh~) ]=0  [41al 

r(cosh ~:+ cos r/)l/2co~h S co, ] 
Hm2 L cc-~sh-~-c-os-~ sinh 7] sin n Ksm (cosh ~) = 0 141b] 
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where K~m(a) denotes the Mehler conal function of order m, which satisfies, for a > l, the 
equation 

_ _  l m ] ~ - m  _ 
da (a2-1)  + s2+~-a-y-L~_ljr,, - 0  [42] 

and is defined as an associated Legendre function by 

K~m=p~+i~ (s>~O,m>~O). 

Although [41b] is valid for m =0  and [24] takes the form [31] when #/sin 0 is replaced by 
-a~o/aO, the velocity representation is inappropriate for axisymmetric flows because the 
function Ksm(cosh ~) in [41b], which for m I> 1 vanishes on the axis ~ = 0, does not do so for 
m = 0. For small a, 

K~(a) ~ 1 - ½(s 2 + ~)(a - I )  + . . .  [431 

The solution for ~(1), which satisfies [34] in the axisymmetric region ~: > 0, 0 ~< , ~< ½1r, and the 
conditions ~(i) = OO,)/an = 0 at 7/= ½7r, is of the form 

s inh  s(½~r - '7) $(1) _ VV~(2) sinh ~ ['= A(s) cos 
- (cosh ¢ -  cos ~)3/2 .No sinh ~szr 

sinh s (~r - 7) sinh sT ] } K ~ (cosh ~:) ds [44] 
-B(s )  sin~ cosh½s~r - 2 s c ° S ~ s i n h s z r J J  s 

by substitution of [~b] for sin 0 and suitable superposition of solutions given by [41hi. Since, 
from JAIl, 

Ksl(cosh ¢) = sinh ¢ K's(cosh ~) 

and p is given by [40a], it is readily seen that [44] is a solution of the type constructed by Payne 
& Pell (1960). A relation between A(s) and B(s) is obtained by applying condition [27] which 
requires that 

a ~ = O  at~/=O (~r>O) a,/ 

Thus  

sA(s) cosh- ~slr = B(s)[s" - smh'~s,r] [45] 

In terms of the toroidal coordinates ~,7/ defined by [40a,b] with a = cosh ~, the force 
expression can be written in the form 

since (~b"))~=,,, -= 0-= (aC,(')la~).=o. Subs t i t u t i on  o f  [44] then y ie lds  
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F :  2r/zV2 {6X/(2)~ r s[a(s)-s (s)l Jo sinh ½sTr K's(ce) ds da 
+ [,_ (o- f (S2+ 1)sA(s) sinh 

s 2 - sinh 2 ~slr szr K'~(a) ds 
S 2 +  1 

=-87rtzV2{3Io~[A(s)-sB(s)]~ds 

f® (sZ+l ,a(s ,  [ (s:+ 1, ½coshs~']ds} 
2 • 21 + l )  q 2(s2+ 1) + Jo s - smh ~szr 2(s2 ¼)(cosh s~r + 

by use of [A6b] and [A8b]. Then, with B(s) eliminated by [45], the expression for F can be 
reduced to 

F = 2~rlz V~ [.. jo[-O f~A(s)(s2+l)(2s2+l)s2- sinh2 ½sTr d s - 3  fo= A(s) Us ] [46] 

Solutions for XIJm(l) and X, f  ) (0 < ~ < ~7r) satisfying [33] and [34] are given, from [41a, b], by 

V 2) (cosh ~ + cos rl) l/2 ~ s(½~- - r/) 
XItm(l)= ~v'/( c o s h , - c o s r l  fo {C(s)cos sinh r/ sinh ½szr 

sinh s (½~- - r/) sinh srt ] 
- D(s) sin rl cosh ½ s~" - 2s cos "0 sinh s~-JJ K~"(cosh ~) ds [47] 

If " sinh s (½~r- n ) v  
3(., "1 = Vx/(2)(cosh ~¢ + cos 77) 1t2 E(s) cosh ~ s~r .~  (cosh ~) ds. [48] 

Here the functions C(s), D(s) and E(s) are connected by the two conditions [37], which in 
terms of f, "q take the form 

(co  Lv 1] a,.<" + ax.';) 
m \  sinh~ / ~  arl =0  

(j = 1, 2) at rl = 0, ~: > 0. [49] 
02~ q) 3'tlJ'mq)_ m2~mU" ) sinh 2 f a-------~ - sinh f cosh f a~: - 

5. STRONG SURFACE TENSION OR GRAVITY FORCES 

In approximations (a) and (b), in which either 3' or Ag is large compared with tzV, the 
dominant contribution to the velocity field qt ~> can be calculated by ignoring in [13] the 
discontinuity in the pressure field PI<s). Equivalently, the surface tension and gravity forces 
exactly balance, in these approximations, the normal stress discontinuity due to the intro- 
duction of the different viscosities into the zero order flow qo. Thus, in the axisymmetric case 
(i), [16] yields 

Ag dp 
F = 9/~V,7 [-o~r (p ~ / (~) ) f  Ko(p ~/(--~-))-~-Ko(p ~ ( ~ ) ) f  Io(p ~] ( '~ ) )~ -~}(p  > 1) 

[501 

whilst in the asymmetric case (ii), [18] implies that 

,= _%V {I, (p '/(~)1 1 '<' (P '/(~))~-'<' (0 ' / (~)) f "  (0 ,/(~)) ~} ~o,, 
(p > 1). {5i] 
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Here the constants in the indefinite integrals are all set equal to zero because Io, Ix increase 
exponentially with p, whilst Ko, Kz decay too slowly with increasing p in approximation (a) and 
are exponentially small in approximation (b). 

It is the need to simplify expressions [50] and [51] which restricts detailed consideration 
here to sufficiently large or small values of Ag/% In approximation (a), the simplifications, 
obtained by using the leading term of each Bessel function at small values of the argument, i.e. 
p2 ~. 4y/Ag, are 

f = ~pV (p > 1) [50a] 

f=-~pVCOSO (p>l) .  [51a] 

The above outer limit on p may evidently be regarded as immaterial and therefore ignored in 
the subsequent analysis. Similarly, in approximation (b), the simplifications of (5.1), (5.2) 
obtained at large values of the argument p(Ag/'~) m are 

f =-9A~gV p ( p> l )  [50b] 

3/tV 
f=A--~cos  ~b (p> 1) [51b] 

where the extension of validity down to the value unity of p requires Ag >> 10y. Note that the 
interface is flatter when surface tension dominates than when gravity does so. 

On considering first case (i), substitution of [50a] into [15] shows that 

-----2pdp P2 2p ~ p  (z=0, p > l )  

and hence, from [24], the stream function is such that 

(1 5 s 
¢/"(p, 0) = - + T o) (p > 1) [52] 

With ~b (l) given by [44], condition [52] yields an equation determining A(s), namely: 

5 3 
3¢/(2)(O[- 1)1/2p2 f O A(s)KPs(ol ) ds~. _~_~ (1.~.1_~.~ ) 

where a = cosh s e. A rearrangement of this equation, which enables the integrals given in 
appendices 1, 2 to be readily used, is 

1 f / l  1(1  1 1 3 

1 [(a_.T_ .1)_ ''2 a - 1  1 1 [l__ [~-- l~__S [~-- 1~2] 
=21. a + l  (a-'g-l-~]-2(a+l)(a-l)m+(a+l)~(a-1) u2 \ a + l /  t,-~-~/ J 

The inversion is achieved by means of [ASa], [A9a] and [A12], which show that 

~ A(s) = a(s) + s ~ z  [~ + Jo.,(s) - Jf.z(s) - 3J2.1(s)] 

cosh sir 
cosh sir + 1 1 f3 1 f® s sin 2vs ,, s. ~ 2  dv]. 

2(S2+ I) cosh sTr + s - ~  [~-~Jo ~ t '  -~tann v - ~ t a n h  4 v) 

after substituting [A15]. 
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With A(s) determined, the corresponding force F is given by [46]. The integrals [A161 and 
[A171 show that 

by integration with respect to tanh u. When the force AF due to the field hq,“’ is added to the 
force 37~(~, - p2) Vi due to the velocity field qO, it is seen that, to the order calculated: 

Force on sphere = 37~(~, - p2) Vi 1 - 7 [$7~ - 2]- : jO= A(ssji$;l$s;: ‘) ds}. v41 

Similarly, substitution of [50b] into [IS] yields 

V(~)(CK - 1)1$2[ A(s)K@jds =g (-+-+++) 

and hence 

A(sjK:(cuj ds = 2((y _ lj, 2 --l , {(-J-f)-‘(l-f)+i(1--#3+-+-~-~)) 

, (a - l)“* lY-1 3 
= -2 

[ 
--(cu+1)3/2 a+1 1 + cz+-++ 2((Y + l)(cy - 1)” 

-(a + l)Z(cy - 1) 
l ‘,J3+(;)-(=J-3(;)1]. 

The inversion, which now requires the additional use of [A6a] and the a-derivative of (A5a) at 
n = 7r, then yields 

4(1-f?) 
$$A(s)=- 

cash S?T + 1 
cash SIT + 2(s2 + 1) cash SIT 

m s sin 2vs 
------(1+itanh20-itanh4v--$tanh6v)dv , 
cosh3v 1 

corresponding to [53]. Thus 

I =A(s)ds=@24-%a) 
0 

and the force expression [54] is accordingly modified for approximation (b). 
In case (ii), substitution of [Sla] into [17] shows, after some rearrangement, that 

&_. PVd 1 3 _ --- 
V zypdp ,-~+$-3)+$+~++)cos24’ 

( 1551 

Evidently the velocity field q1 (j) exerts, in this approximation, no torque on the sphere but only 
a force due to its axisymmetric component which, from [24], may be derived from a stream 
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function ~t=)(p, z) such that 

0~)(V,0)= /~V ~/I 3 I \ > [56] 

The calculation of ~¢~) is similar to that of ~,~=) and the details are remarkably alike. Since, from 
[52] and [56], 

~¢1)(p, 0 ) -  ~/O)(p, 0) 43,0 = 

it follows, in an obvious notation, that 

(~ - 1)3/2 
~/(2) ~V f :  [A(s)-  A(s)]K;(a)ds=,-~--~.  

The inversion is given by [A12] and subsequent substitution of [A15] shows that 

Y .[A(s)-A(s)] = 3 45 r = s sin2vs _ --4 ]2V S'~-~] J2'i(s)= - ~ J o  cos--~-~-v tann vdv. [57] 

Thus A(s) can be derived from A(s) by simply deleting the J2,1 term from [53]. Hence, by 
comparison with case (i), 

~ fo°ACs)ds= -2 + 2' ff~r 

and, to the order calculated: 

Force on sphere 

[/~V 2~ r_2~+_2 [®:t(s)(s2+l)(2s2+l)~ "! 
= 3 ~r(/z, +/z2) V'f - 3 ¢r(/z, -/-t2) V~ [-~-  (~ , 3)0 sinh2 ~scr_ s2 os j  [58] 

Torque on sphere = 3 ~r(/z, -/~2) V~ 

Similarly, for approximation (b), substitution of [51b] into [17] shows that 

q~"z_3~V d 1 (_~ 3 1 15/zV / 3 1 
V ~ 2Agp dp (z cos 

which expression differs little from its counterpart [55] in approximation (a). Then 

¢;"'(p, o)  - I ¢/ ' , (p,  o)  = - ~ i~#p,  

and hence 

[59] 

MF Vol. 8, No. 4--E 

~-~--[~A(s)-~A(s)]= 3 105 ~'® sin 2vs 
/iV -~J3 .1 ( s )=  ~ j ° cos---~-~v tanh6v dv 
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Thus ia(s) can be derived by deleting the J3,r term in iA and so, by further comparison with 

(i), 

I 0 
l&s)ds =$8-g,) 

with a consequent adjustment to [58] for approximation (b). 

6,WEAKSURFACETENSION ANDGRAVITYFORCES 

With y and Ag both small compared with pV, approximation (c) involves the discarding of 
the surface tension terms in [13], with the result that the field q,(j) is determined by a prescribed 
pressure discontinuity at the “interface”. Thus in the axisymmetric case (i), [16] yields 

[P,“‘],=” = -5 (.P > 1) WI 

whilst in the asymmetric case (ii), [18] implies that 

(p > 1) [611 

In both [60] and [61], [P,‘*‘],=,, has been eliminated by use of [ 191, which states that the pressure 
field P,(j) is an odd function of z. 

Again considering case (i) first, condition [60] can be replaced by one prescribing a derivative 
of the stream function I,#‘) because [25] and [27] imply that 

and hence 

a3*(1) 

( 1 -2-- --() 

= -F (p> 1). WI 

Then substitution of [44] in [62] yields an equation determining A(s), namely 

45 0 - 1 5’z 
-- 

2 
( I_ > 

n+l 
=$(a - 1)3 (T),;, 

= - d(2)((~ - 1)3’2(~2 - 1) 
I 

= (‘* :z”“;$inn ‘= K;(a) ds. 
0 2 

This can be integrated with respect to LX, showing that 

The inversion for A(s) is achieved by combining (A4a) suitably with the q-derivative of (A5a) 
and letting q -+ r. Thus 

A(s) = 
4s(sinh2 + s7r - s’) 
sinh SIT cash ST WI 
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Substitution of [63] in [46] shows that the force on the sphere due to the velocity field Aqt °~ is, 
in this approximation 

fo°[ 2 ~)(2s2+1)_61 AF=- Ir(/tl-/~2)V.¢ 8(s + sds 
cosh s~r sinh s~- 

33 = - ~ ~r(/~ -/~2) V~ 

by use of [A20]. Hence the force 3~-(/~t-/z2) V£ due to the zero order field qo is reduced by ,~F 
15 to ~ ~r(/~m -/~2) V3. 
Although the force evaluation is simpler here than for small/~V/y, the calculation of the 

interface displacement function/(#) is considerably more lengthy. As in section 5, [15], [24] and 
[44] imply 

l / 2 5 + 3 \ ( ~/(2)(a 2- l) (® 
- ~ [ P - ~ p  ~ p ) f P ) =  (a_l),,2 Jo A(s)K',(a)ds 

i .e .  

( l - ~ p  +2-~) f (p )=-  2V/(2)(a - 1)~n fo® A(s)K's(a)ds. 

Now [63] and the integrals [A22] and [A23] show that 

/0 = fo = s(cosh s i r - 1 -  2s 2) K',(a)ds 
- ~/(2) A(s)K'la) ds = - 2~/(2) sinh s~- cosh sir 

6 f f  du 
= ~ (cosh u + l)(cosh u + a) 5n" 

Then the substitution 

2 dt 
t co shu+ l '  du - tX/ (1- t )  

yields the alternative expression 

t=  3 f' t5/2 dt 
- V'(2) Jo A(s)K' , (a)  ds = k 2 ) Jo (1-t) 'n(p 2 -1+ t )  sn 

so [64] becomes, after cancelling a factor ( p -  1) 2, 

/ t ~sn dt 

Evidently, as p--* % 

3 l "j :/2dt 

15 1 

[64] 

[65] 

[66] 

[67] 
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and comparison with [50] shows that the displacement of the interface tends to zero at large 
distance much more slowly than in either of approximations (a) and (b). 

The behaviour of [(p) in the p ~ 1 limit is found by using the following integral represen- 
tation of the hypergeometric function: 

L 
1 

F(a, b, c, z) = [B(b, c - b)] -1 t b t(1 - t)~-b-l(1 -- zt) -~ dt 

where B(x, y) denotes the Beta function, c > b > 0 and z is not real and positive. Asymptotic 
forms of F for large z, valid for non-integral values of ( c -  b), are given by Abramovitz & 
Stegun (1964, section 15.3.13/14) for a and b being equal or differing by an integer. In [66], 
b - a = 1 and this particular case emerges, after considerable manipulation, to be also the only 
one required when the asymmetric case (ii) is subsequently considered. Thus the following 
simplified asymptotic form is sufficient here: 

/ t ~k-l/2 
fo [ ~ )  ( I -  t) '-(1/2' dt 

=(p2_ l)-(,-(t/2))B( k + ½,1 + ~)F(k-½,k + ½, k +l+ 1,-pl-~_l) 

(1) 
l +'~ - (k - ~)(p2 _ 1)lOge ~ + O(p 2 -- 1) [68] 

where k and I are non-negative integers. Hence the form of f(p), given by [66], in the p -~ 1 limit 
is 

[69] 

5~r -~ ( p -  1) IOge + 0(p-- 1). 

So although f(l) is finite, f'(p) becomes logarithmically infinite as p ~  1, corresponding to 
tangential contact of the interface with the sphere and complete "wetting" by the less viscous 
fluid. This angle of contact satisfies trivially the equations given by Michael (1964) for the 
Stokes flow of adjoining viscous fluids at a corner. The linearisation of the interface conditions 
at z = 0 depends only on f remaining bounded but those conditions involving the direction of 
the normal ti, given by [9], assume that the derivatives of f are bounded. Condition [12] is a 
differential equation for f(p) with a regular singular point at p = 1, whilst, since the relevant 
velocity derivatives tend to zero as p--, 1, condition [13] (with y = 0) remains appropriate for 
the pressure discontinuity in P1 ~j). It is in this "weak" sense that the solution obtained is valid. 

Proceeding now to consider case (ii), condition [61] shows that in the absence of surface 
tension forces, a suitable representation of the velocity and pressure fields ql ~) and Pm~) is given 
by [31], with m set equal to unity. Evidently [61] implies 

V 
[ n , * l " ) ] : : o  = - ~--'s_ • 

,:p 

But the second of conditions [37] or, more directly, the vanishing # component of [31] implies 
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that 

[ 0 ~ l  (~)] 
[H'*/~)]'=° = L~'~-p J.=o 

and hence, after two integrations and use of conditions [35], the inhomogeneous condition on 
• ~(~) is found to be 

V(  
[~10)]z=o = -'~p p- I) 2. [70] 

Then the first of conditions [37] shows that X~ (~) is related to ~/~) by the condition 

~ 1 , = o  = ~ ~=-gp [*,(')],=o = - g I - ~ .  [71] 

The torque on the sphere due to q O~ is then easily evaluated by direct substitution of [70] 

and [71] into [39]. Thus 

1 d - I  

When ~T~ is added to the torque 3~r(/tl-/L2)V9 exerted by the zero order flow qo, the total 
torque up to the order calculated is found to be 9(/tin -/t2) V$. 

Solutions for ~/~) and X/I) are given by [47] and [48] and the functions C(s), D(s) and E(s) 
are determined by the conditions [70], [71] and the second of [49]. From [47] and [70], 

(a+ 1)1/2 ~f C(s)Ksl(a) ds = ½ [I - (a--YZ-~ ] L  Ja ~/(2) ~---] Jo [72a] 

whence, using [A1], 

j, I (u--Z) I12 .~'1 )'sf~ ], 
fo®C(s)K~a)ds-2-'-~[ a'+-']1 (a 

Then, by comparison with the inversion for a(s) in [A8 a, b], it follows that 

1 cosh s~r + I I 
C(s) -- cosh s'/r 2(S 2 + 1) cosh s~r + 

Also, from [48] and [71], 

[72b] 

w h e n c e  

(~- I)'" _ i) (ax/"~ __ V(2)(~ _ i)(,~ + I),/2 f ® 
2(a + 1) 3/2 = - (a \ 0vl /7=0 Jo sE(s)K,l(a) ds 

1 1)_3/2 . 
2~/(2) (a + = (a 2 - 1) fo ® sE(s)K~a) ds. [73a] 
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The identity [A10a] now implies that 

fo~[SE(s) -  ~bts)]K'~(a)ds - 1 (a + 1) -5/2 
4~/(2) 

which, after an integration with respect to a, yields 

fo = 1 1)_3/2 [sE(s) - ~b(s)]K,(a) ds = ~ (a + . 

Then [A5a] provides a simple inversion which, with the substitution of [A10b] for b(s), shows 
that 

tanh sTr s 1 E(s)= _ ~ + ~  [1 + ~ ] .  [73b] 

Lastly the determination of D(s) is achieved by first substituting [48] in the second of 
conditions [49]. Thus 

(or + 1)3/2 f o  [(s 2-  1)C(s) + 2sD(s)] K s l ( a ) d s - [ ½ ( a  + 1)1/2 + 
(a + 1) 3/2 ] f C(s)Ksl(a) ds 

~---1 J Jo 

= [(a2_ l)a d + l ] (a + l)'/2 f ~ 
_1 ~ - -1  Jo C(s)Ksl (a)ds  

where all but the first integral can be expressed in closed form by means of [72a]. The resulting 
simplified form is 

Using (AI) and [73a], this can now be written as 

2X/(2) [(s 2 - 1)C(s) + 2sD(s) + sE(s)]K~a)  ds 

1 3 3 
= - 2 ( a  + 1)st2(a - 1)- 2(a + 1)3t2 + 2(a - 1)1/2(a + I)" 

Then [A.6a], [A.9a] and [A.10a] imply that the inversion is 

(s z - 1)C(s) + 2sD(s) + sE(s)  = - ~ b(s) + - -  
3 3 

2 cosh s0r ~ "  

Substitution of [72b], [73b] and [Al0b] then shows, after some manipulation, that 

tanh sTr s [~ 1 1 ] s s 
O ( s ) = ~ + ~  S + ~ l )  ~ + ~  ~ "  [74l 
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Now, since [31] implies that 

1 t~(lh - "~t,~lzJz~O- w(p)cos ~ (p> 1) 

where 

381 

[751 

1 [02~Ill(1)+X(1)~ r=O w(p) = --~p ~ l ]o=½~ [76] 

it follows from [17] that, in this approximation which ignores surface tension and gravity, the 
interface displacement function f -  f(p) and satisfies 

( l - l ) 2 ( 1  + 1 ~ d f + ] ( 1 - ~ )  f - ~p] -~p -~- w<p) (p > 1). [77] 

Proceeding to evaluate w(p), it follows from [47] that 

1 ( 0 "  i'1'~ 1 (O*lO')  

312 oo s C ( s )  + =%/(2)(a+1) fo { ~  D(s)[tanh½s~r sin-~2scr]}K'(a)ds 

4 cosh scr 16(s 2 + ~) cosh scr 

s 2 1 1 2 
sinh scr [~ - ~ + co-~-fi--~scr (~ fl + ~ - 8(s--~) ) ] } K's(a ) ds 

after substitution of [72b] and [74] and some manipulation. Also from [48] and then [73b], 

I cv(l)~ I l)mfo ° "~w~m jo=v~ -- V'(2)(a + E(s)tanh½scrKsl(a) ds 

= X/(2)(a- 1)l/2(a + 1 ) f ;  [ (l-sechscr)qs(1-sechscr)[i, 1 ~] 
- 8(s2 + ~) ~ ~ -  ~ -r ~ ] j  r'(a) ds. 

These s-integrals can he evaluated or re-written by means of [A6a], [A9a], [A21], [A22], [A23], 
[A24a, b], [A25a, b] and [A26a, b] and the expressions thus obtained are 

1 (O*,tI)~ [ - (a+l~ ln  ]2 ( a+ l )U2f®(coshu_ l )du  
V \'-~-]o=½~ = I [ \ a  - 1] - 1 T~ ? Jo (cosh/l "[- a )  3/2 

(a  + 1) 3/2 f® (cosh u + 1) 
- 8-~a-- ~ 1o (cosh u + a) 3~ du 

4 (a +2~r 1)3/'--~2 cosh u + 1 + ~cosh/C°sh uU +- 11 +_~ (cosh u - 1) (cosh u + a) 5/2 

1 ~vo)x  ~ _ 1 [  /a+l~l/2] 1 r ® du 
V " ~ '  ,s=2,, - ~ 1 - [~--Z-~_ 1} J + 2¢r(a - 1) I/2 lo (cosh u + ~)112 

i)<,,_ 1),, fo du (cosh u + a) 51~ 
= _ ~  [ / a + l ~  In Lka- l / - ' ]+3~r(a  2- f® coshudu  

1) ~/~ Jo (cosh u + a) m 
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after an integration by parts. The substitution of [65] then yields 

1 (0"1~1'~ 0(192- 1)~'  + t,_3/2 [ ~19e 
-V\ O0 ]o=~ =~(19-1)2-F 4r  ( 0 2 - I  - 2 ( 1 - t ) - -  

2192t , 192t2(l-t)  , l1192t(1- t )]  dt  
-F 192 _ 1 + t * 192 - 1 + t * 2(192 - 1 + t) X/(t(l - t)) 

I x , i ,  ! 1 ~.~ lo'(2-t) dt 
-~( i )o=~.=-~(19-1)+ (192-1) 2 ( 1 9 2 _ l + t ) 3 n \ / ( t ( l _ t ) ) .  

The first of these expressions can be further simplified by writing 

2192t - 2 t ( l q  l - t  ) 
192- 1 +~ 192 --i% t 

and using the following identities, obtained by integration by parts: 

foltl/2(l-t) In l fo' (1-2t) dt 
(192 - 1 + t) k+1/2 dt = 2k -------1 (192 - 1 + t) k-il: ~/(t(1 - t)) 

1 t3/2(1 -- t) 1/2 1 I 
fo (/9 z - l +  t) k+'n dt = 2 k - 1  fo (192 -(3- 4 t ) l  + t) •-In 4 ( ~ - t ) d t  

Thus, setting k = 2 and then k = 1, 

l (a , ,"% ( " '  
V \ - - ~ - - /  o=~ : ~ (19 -1)2 +19 ~ Jo (p2 - 1 +  t y sn [ - 2( l - 2t ) - ~ p 2 

dt  + 2 (I - 2t) + 192t(1 - 34- t) + ~ 192 (1 - 2t)] ~/(t(1 - t)) 

= ~ (19-1) 2 - ~ p  fo I ( t ]3/2 3~" (192 - 1)2 dt ~o --r-zq-~/ x/(1- t) 

The 
according to [76] by suitably combining [78] with the 19-derivative of [80]. Thus 

(/92-- 1 ) 2 f  I / [  t ,~3/2 [1 
19w(19)= 3~r Jo [ \ p  z--r-L-T%~] +194p21 

But, from [79], 

dimensionless normal velocity amplitude w(19), defined by [75], is now obtained, 

and hence 

102- 1 fo I ( pw(p) = ~r (192- 1 + t )  -3 /2  - 31-[(p 2 - 1)(1 - 0 2 -  192t 2] + f l (2-  3t) 

+ ~ t [3(1-  t )2 -  p2 (3 -4 t ) ] }  k / ( t ~ l t  t)) 

= 'B" " t \312 dt 
19~-1 fo' (p _-r_-TZT)(2-~ t) ~/(1_ t) 

3192 ] 1 -  ~t ~ dt  
192 - 1 + t J - tin(192 - l + t)3/2] V'(~ L t)' 

dt ~- fl (3-4t) 

[78] 

[79] 

[80] 

fo  I i01 3/2 3192 t 3n dt  
(192 - 1 + t)snX/(1- t) =3 ( p 2 - t )  - l + t  



TWO PHASE STOKES FLOWS DISTORTED BY A SPHERE STRADDLING THE INTERFACE 

after further use of [79]. Thus 

p 2 -  I f l  / t ~3/2 

Evidently, as p-~ oo, 

383 

[81] 

9 

whilst the asymptotic form [68] shows that, as p-> 1, 

w(p ) - PT~pl [ 4 - 6(p2 -1) log, (p l-~_ l ) + O(p2 -1) ] 

- ~  1" 12 ( ~ _ l ) + 0 [ ( p  - i)2]. 4 (p _ ~ -  ~ (p_ i)2 log, [83] 

Together with the differential equation [77], [83] suggests that the behaviour of [(p) near 
p = l  is 

f(p)~ fo + f,(P-1) log, (p-~) +O(P -1) 

8 4( 
-3~r ~r P -  l)l°g" ( ~ -  1) + 0 ( p -  1) [84] 

with the coefficients determined by direct substitution. This is of the same structure as the 
expression [69] for the axisymmetric case (i). However, in contrast to that case, the constant fo 
can be determined by seeking the value of 0 for which the 0 component of tangential stress at 
the surface of the sphere is zero. This is the appropriate condition for the attachment of the 
interface to the sphere, and to order A, yields 

[o ] 
o = Tr (qoo +,~q~) ,= ,  

= [~ cos 0 - Aw'(1)] VCOS ~b, 

from [75] and the alternative form of [7]. But cos 0 = A/(1) here and so, with w'(1) given by [83], 
it follows that/(1) = 8/3zr as in [84]. 

The value of [(ao) depends on global features and cannot be deduced from a local analysis of 
the differential equation [77], using [82]. If the natural assumption that f ~  0 as p--> ®, is made, 
then [77] and [82] imply that 

d/  9 
d--p - 32p 2 as p ~ oo. 

Also, since the integrand of [81] is uniformly positive, [77] has a positive right hand side w(p). 
Thus as p decreases from infinity, f decreases from zero and [77] implies that f'(p) must remain 
positive. Hence f(p) is then an increasing function of p for all p > I and cannot take the value 
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8/3~" at p = 1 prescribed by [84]. The exact solution of [77] that vanishes at infinity is 

t + 1 -,/2 w ( p ' ) d p '  
f ( p ) = - ( l  - 1 )  (1 ~p) I f f ( l _ l \ /  l \  1/~-" [851 

This incompatibility shows that the assumed form of solution is invalid in the limit 
"y = 0 = Ag, in which the absence of surface tension and gravity forces means there is no 
"restoring" mechanism to act against the "deforming" mechanism created by the viscosity 
discontinuity. However it may be expected that for small enough values of 3' and Ag, not both 
zero, the above calculation provides a good approximation to the flow field in regions where 
surface tension and gravity forces have little influence. 

7. ACCURACY OF THE SOLUTIONS PRESENTED 

On defining K (> 0) by 

K 2 = ('y//z V) 2 + (Ag/~V) 2 [86] 

the solutions given in section 5 for f and V -I q U) are approximations of order ~V/y  and t~V/Ag 
to the 0(K -~) terms which would be obtained if [50] and [51] could be retained in the 
calculation. These and all higher order terms in the expansion of f and V -~ q U) in inverse 
powers of K are evidently functions of the parameter Ag/% Successive corrections to f are 
evaluated, according to [13], from the pressure discontinuity arising at the previous stage of the 
calculation. Thus in case (i), the pressure discontinuity in the given solution leads to axisym- 
metric corrections to [ and V-~q(j) and thus a force of order ( / ~ -  ~2)V/K 2 on the sphere in the 

direction. Evidently all subsequent corrections are also axisymmetric and the expression in 
curly brackets in [54] becomes a power series in K -~ with coefficients depending on Ag/% 

Meanwhile, in the asymmetric case (ii), the pressure discontinuity in the given solution has 
meridianal variation of the form 1 and cos 24', which leads to terms of order K -2 in f(p, 4') with 
similar dependence on 4'. Hence, from [12], the terms of order K -2 in ~o) ,~z are proportional to 
cos 4' and cos 34' and the first type yield a torque of order (gt - tz2)V/K 2 on the sphere in the 
direction. Similarly the terms of order K -3 in f and q U) produce a force of order 
( Iz l -  p,2)V[K 3 on the sphere in the ~ direction. Evidently the subsequent corrections modify the 
torque and force alternately and the expressions in [58] and [59] are modified by the suitable 
insertion of power series in K -z with coefficients depending on Ag[7. With this procedure 
established, the exact solution for [ and q U) may subsequently be regarded as known. 

If the perturbation scheme introduced by [4] and [5] is continued to second order in A, then, 
since [8] needs no modification, the equations corresponding to [9] and [10] are 

= -;_:aI" A al ~ = ~  [87] 

q(p, 4', ,if(p, 4')) = qo(p, 4', O) + ,~ q(~)(p, 4', O) + a2q2U)((p, 4', O) 

~ql , ~ 0 qo  
+ (p, 4', O) + A - ~ z  [p, 4', O) Af(p, 4')+~-~z2(P, 4',O)AZ[f(P, 4')]2 

+0(A 3) ( j=  1,2). [88] 

The continuity of qo and its derivatives, q U) and aq(~)/oz at z = 0 implies, in [88], that q U) is 
also continuous at z = 0. Now [19] and the continuity of aq°~loz imply that [Oq]~)JOz]z=o = O. 
Hence, using [21] and [87], the 0(A z) terms in the equation q.tl = 0 show that [q~]z=0 = 0. Also, 
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[14] and (0/0z)div q O3 = 0 imply that O~q°l~lOz2 is continuous at z = 0, [19] shows that aP~OlOz 
is continuous whilst div q O3 = 0 and the continuity of qz imply that Oq~lOz is also continuous at 
z = 0. Hence 

~,zzJ~=~: - 2A - A ( P ,  (D - P,(2~)z=o - A~(P2 (') - P2(2~)~=o. 
I i \ dZ Iz=o 

Equations [14], [20] and the vanishing of q2°~ and ~q~)~lc~z at z = 0 show that 

r~.(,, ~(') (0_~o + 2 2 (,) [Oqt2~ Oq(2~ ] It_(,) _{2)~ /~_.~+-,t,,+ aqo,+~]] +~2 
tz t,,pz-~,p~J~=~/=2A: L Oz ap  f k Oz" ~ 3z" / J ~ = o  L Oz az J~=o 

- ~zJz=, /= 2A2 + c~ qo 1 O"qo~ 0 q~ A2 _ 
# tO'¢z L 0z ~=o 

Hence the continuity at the interface of the stress components of order ,~2 requires that P2 (j) be 
continuous whilst Oq°~/?z and c~q[/~/c~z have discontinuities at z = 0 prescribed by the lower 
order velocity fields. Thus, in exact contrast to [19] and [20], 

q~,;(p, 4,, - z) = q[~(p, 4,, z), q t ; (p ,  os, - z) = q~,'~(p, Os, z) [ 
(z > O, 

J 
r > 1). 

P2(2)(p, 4~, - z )  = Pz(I)(p, ok, z) ,  q ~ ( p ,  ok, - z)  = - q ~ ( p ,  ¢,  z )  

So in the axisymmetric case (i), the stream function is an odd function of z and there is zero 
contribution of relative order ,~2 to the force expression [54]. Similarly in the asymmetric case 
(ii), there are no contributions of relative order A 2 to the force and torque expressions [58] and 
[59]. 

By contrast, the calculations in section 6 for zero y and Ag have not yielded uniform 
approximations to f and V-~q, ~) at small K. The solution presented in the axisymmetric case (i) 
is a good approximation for y -  0 and Ag//zV small, with the same reservations concerning the 
infinite derivative of .f as p --> 1. But if 7# 0, the neglected surface tension terms in [16], which 
are of relative order (y//~V)(p-1) -l, become unbounded as p-->l and the validity of the 
constructed solution must be confined to an outer region where surface tension is unimportant. 
The flow field pattern must be completed by constructing an inner solution valid near z--0, 
p = 1 and extending to p = 1 +0(y//~V). In case (ii), where the constructed outer solution is 
incompatible with a finite f at p = 1, the neglected surface tension and gravity terms in [18] are, 
according to [85], of relative order (~,//zV)(p- 1) -3 and (Ag//~V)(p- 1) -' respectively. Thus the 
required inner region must extend to values of ( p -  1) of order (1,//zV) ~/3 or (Ag//~V), whichever 
is the larger. 

For large or small values of K, defined by [86], it has been shown that, though both surface 
tension and gravity forces act to stabilize the interface against the effects of the viscous 
stresses, gravity tends to confine the displacement near the sphere whilst surface tension tends 
to maintain the flatness of the interface. Further, a sufficiently large value of K is required to 
validate Ranger's suggestion that an axisymmetric Stokes flow past a sphere can provide a 
useful approximation to the corresponding two phase flow in which the sphere straddles the 
interface. 
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APPENDIX 

The Mehler conal function Ksm(ot) satisfies the differential equation [42], namely 

[ d K T ]  + ( s  2 I m 2 d [ (a2-1)  Ks" ( a > l )  dc~ J + a-  a - ~ _  1, ] =0 

where m is a non-negative integer and s/> 0. Denoting by K~ C"° the mth derivative of Ks(a), the 
functions of positive order m are given in terms of the zero order conal function by 

gsm(ot) = (o~ 2-  1)rot2 d~m Ks = (a 2-  1)"nK~"~(a) [A1] 

Substitution of [A1] in [42] shows that successive derivatives of Ks(a) are related by the 
recurrence relation 

d { ( a  - 1)mK~ ~")} + [s 2 + (m - ½)2](a2 - 1)m-lKJ m-l) = 0 (m >1 1). 

Now, the Fock theorem states that if 

then 

F(a) = f o  G(s)Ks(a) ds (a >i 1), 

~0 ~ 
G(s) = s tanh scr F(a)Ks(a) da (s >1 0). [A2] 

The above recurrence relation enables the corresponding result for Ks ~'~) to be deduced 
inductively. Thus, for each m 1> 1, if 

Fro(a) = Gm(s)g~")(a) ds (a ~ 1) 
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then this Mehler-Fock transform of order m has the inversion formula 

s tanh ~ fl ® (a 2 - 1)mFm(a)Ks°")(a) da (s >! 0). Gin(s) 
]1 [$2+(r_1)2 ] i 
r=l 

For further details, see Sneddon (1972), section 7. 

As given by Schneider, O'Neill & Brenner (1973), the identity 

(a - cos 7) -I/2 = ~/(2) f® 
cosh s(cr 

cosh $7r AAaY os J o  

implies, by [A2] 

whilst 

implies 

~ cosh s(~'- 'I) K,(a) . da = ~/(2) 
(a - cos 17) 'n s sinh scr 

® sinh s(~- - 71) . . . .  ds 
sin 7 (a - cos 7) -312 = 2V/(2) cosh s~" ~:a; 

fl (Of Ks(a) 3/2 da 2~(2) sinh s(cr- 7) 
- cos 7) = sin 7 sinh s~- 

Also, formula (A3) shows that 

(a - cos 7) -3/2 = - 2X/(2) Ji co-"o-~ ® cosh s(~r - 7) K'(a) ds 

implies 

~ = a 2 - 1 - 2~/(2) (s 2 + ~) cosh s(Ir - ~) 
(a - cos ~)m K~(a) da = s sinh scr 

An 7-integral of sin 7 times [A6a] is 

(a -- I) -'/2- (a + l) -~/2 .... f~ cosh s~" + 1 , 
= -- V t 2 )  Jo ( s2 @ l )  c o s h  s~r Ks(a) ds .  

The function a(s) defined by the equation 

fo ~ 1 [ a - I (~ - 1) v2 ] a ( s ) r X a ) d s = ~ [ - ~ - ~ ÷  ~Tf J 

1 [ 2 I f 2 ] 
= 2x/t2) [ ~  + ~ - ~ - ; T ~ - ( , ,  + l)(~ - I) ;'2 ] 

is given, according to [A3], [A6a] and [A7], by 
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[A3] 

[A4a] 

[A4b] 

[A5a] 

[A5b] 

[A6a] 

[A6b] 

[A7] 

[ASa] 
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a(s) = 
2 

cosh s~- 
c o s h s ~ + l  _ s t anhs~  ~ 

2(s2+ 1)cosh s~ ~/(2)(s2+~) (a - 1)l/2K](a)da 

2 cosh s~r + 1 1 
cosh sTr 2(s 2 + 1) cosh s~" F 

because, using [A4b], 

1 fl~ 1 1 ~  Ks(a) d a =  - 1  [A9b] 
~/(2) (a - 1)t/2K's(a) da = - 2~/(2----~ ~ 2s tanh s~r 

The inverses of [ASa] and [A9b] are 

1 f l  ~ (a - 1) 3/21- / a  - 1\1/2-1 
2~/(2) [ 1 - ~ - - ~ )  J K~(a)da  

(s 2 +~)a(s) 

s tanh sTr 

2(S2 + ~) (S2 + 1) (cosh s'n" + 1) 1 
+ [A8b] 

s sinh s~r 2(s2+ 1)s sinh s~" 2s tanh s~r 

1 1 f)~ K'~(c0 ds 
(a + 1)(a - 1) 1/2- N/(2) ~ [A9a] 

It is often possible to reduce by one the order of a K,? ") inversion by considering 
(d/da){(a 2 -  1)mF,,(a)}, but this procedure fails when 

[(Ot 2 1)mFm(a)]Ks(m-I)(ot) l)"F,.(a)K~(m)(a) da. -- ~1~ ~-~ -- dot # fl~ (o~ 2 -  

This occurs when (a 2 - l )"Fm(a) tends to a non-zero limit as a --* !, the reason being that in this 
case the additional factor ( s 2 + ( m  _~)2) makes the s-integral divergent. For example, the 

correct inversion of 

b ( s ) - -  

fo ~ ~/(2) b(s)K'~(a) ds = (a + l)3n(a - 1) [A10a] 

s2+J 
s tanh s~r 

fl °° i do/ - ~/(2) K , ( a ) ( a + - ~  = - 1 + - -  
2s 

sinh s~r' 

by use of [4.22] and [A5b]. Thus 

s tanh sTr 2s 2 
b(s) = - - - s - r - ~ ' ~  + (s2 +]) cosh s~r (A10b) 

and the alternative procedure fails here because 

(s 2 + ~ ) b ( s ) -  - s as 

APPENDIX 2 
Consider the integral 

S ----) oo. 

s tanh s~" [~ (a - 1) "+"-1/2 
V'(2) Jl (a + 1) "+1 Ks(")(a) dot (n >! O, m >! O) J..m(s) [All l  
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which, according to [A3], is such that 

1 ( a - l )  " -m ~'® "k,/(2) (a  + 1) n+m+! = J¢ m'm(s)Ks(m)(°t) J. 
ds. 

o l I  [s2+(r-½) 2] 
r =  1 

On substituting the integral representation 

f ®  COS $U 
Ks(a) = V/(2)¢r cosh set Jo (cosh u + a) m du 

(Abramovitz & Stegun, 1964) into [AI l] and then writing 

a - 1 = (cosh u + 1) coscch 2 v, 

it follows that 
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[AI2] 

[A13] 

F(m +½) ['® f~ cos su (cosh u + 1) n sinh v du dv 
J.,.(s), = 2~r s sinh s~r(- 1)" ~ J 0  Jo (cosh u +cosh 2v) "+1 cosh2mv 

2 1 ~o oo ..,. F(m + 9  f f cos su du ,~,.r, ( -  2)r sinh2r+lv dv 
:--ssinhs~r(-l)T: r - - ~ 9  Jo Jo ~ , z = - - o  " ( c o s h u + c o s h 2 v )  '+1 

F(m +½) r fo° ( =~-'~sinhs~'(-1)m-"~2) J! c ° s sudu \ v + l /  ~=o nCr(-1)r(V-l)rdV(cOsh u + V) r+l 

where V = cosh 2v. The u-integrals are now derivatives with respect to V of the function 

io o g(v,s)= S_sinhslr cossudu =ssin2vs [A14] 
~r (cosh u + cosh 2v) sinh 2v 

(Gradshteyn & Ryzl~ik, 1965, section 3.983) and subsequent use of Leibnitz theorem and 
integration by parts yields 

r(m+½) f®[ 2 ~/+l/2~.~n...~ (V.~.I) r Org 
J . , m ( S ) = ½ ( - l ) " ~ j ~  ~ - - ~ }  2. % r[ a I ' ' gdV  

r=0 

_½(-1)mr(m+½) f=( 2_..~ m+½ 0" ,, 
-hi F(-~2) J~ ~V+ l/ -~V -~[(V-Ds ]dV 

~ ( n O "  r(n + m +½) f® ( 2 ~m+l/2(V-|~n 
- - J, xV- /  /gdV 

_ ( - 1 ) ' F ( n + m + ½ )  ['® ssin2vs 
tl[ F(½) J0 cosh2m+l~) tanhZ"v dr. [AI5] 

Evidently [AI5] satisfies the recurrence relation 

! 
J.,., = - ( n  + m -9J~,,.-i +(n + 1)J.+l,,.-1 (m i> 1, n/> 0) 

which can be deduced from [A11] by means of the differential equation [42]. 
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APPENDIX 3 
Some standard integrals, given by Gradshteyn & Ryzhik (1965) are 

f f  ds 7r 
cosh sq = 2q (q > 0) [A161 

f f  coshsTr+ 1 ~ f~ s sin2vs • j _~, 
(s2 + 1) cosh sir ds =z, jo  s2---~-~-- as = ~r  e (v > 0) [AI7] 

I0 ~ s cos su { sinh u 
[A18] 

A particular case of [A18] is 

f: s cos su 1 [AI9] 
sinh s------~ ds = 2(cosh u + 1) 

which, when expanded in powers of u, yields 

/o Io ° s3ds f :  s5 S ds a _ _  _ ~ ds x 
sinh s------~ = ~' siih szr ~' sinh s~ - ~' [A20] 

Integrals involving K'~(a) can often be rewritten by means of the integral representation [A 13]. 
Thus, using [A19], 

1 f f  du ( ~  sK'~(a) ds - 2~r (cosh u - V'(2) Jo sinh s ~ s l r  + l)(cosh u + a) 3:2 

by integration by parts and 

3 f ~  (cosh u - 1) du 
: 4--~ J0 (cosh u + a) m 

/o ,/o [( , ]  s(2sE+l)K's(a)ds=-~ ( c o s h u + a )  3/2 1 - 2 ~ u  cosh u + l 
- 2X/(2) sinh s~r cosh scr 

Also, using [A18] 

3 f f ( c o s h u - 1 ) d u  3 / f / c o s h u - 1 ]  du 
= 2---~ (cosh u + a) 5/2 + - \ ~  1"] (cosh u + a) 512' 

[A211 

[A22] 

[~  sK'(a) ds - X/(2) lim f ~  sK'~(a) cosh s(Ir - "0) ds 
- X/(2) Jo sinh s~r = n-,o.No sinh slr cosh sir 

Io" ) = 1 lim du d { sinh u 
~ r  ,~o, (cosh u + a) 3/2 duu \cosh u - cos ~/ 

3 f®(cosh u + l ) d u  
= ~ Jo (cosh u + a) 5/2 [A23] 

If the integrand differs only by a factor (sE+-~)-t from a previously considered s-integral, the 
differential equation 

d 2 
[(a 2 - 1)K's(a)] + (s 2 + ¼) K's(a) = O, 
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derived from [42], provides a simpler alternative method of evaluation. Thus if 

./t'~ (® K',(a) ds 
Ii(0/) = - v~, Jo (s 2 + I) cosh slr' 

then 

fo ° K'~(0/)ds _ _½(0/+ i)_3/2 [(a 2- 1)lm] = V/(2) cosh sTr - 

by [A6a]. But [45] and [AI6] imply that I~(I)= I/2x/2 and hence 

2 2X/(2) 
11(0/) = (0 / - -  1)(0/+ I) I/2 - a-Y~- l 

Next, if 

then 

. / r ~  f ® sK',(0/)ds 
12(0/) = - v ~ ,  Jo (s 2 + ~) sinh s,r 

£~  sK',(a) ds _ 3 f~ (cosh u + 1) . 
[(0/2 --  1 ) /2  ] = X/(2) sinh s,r 4~r Jo (cosh u + a) 5/2 ou 

d 2 [ 0 / - 1  f~ ( c o s h u - 1 )  d u ]  
= ~ l - V -  Jo (cosh u + 0/)3/2 

by use of first [A23] and then the identity 

d 2 [(0/- I) (cosh t* - l) 3(cosh u + I) I - 3 d [ sinh u ] 
I (cosh • + ol) 312 + 4(cosh u + 0/)5/2j - [ ~ [(cosh u + 0/)512j. 

But [45] and [A20] imply that 12(I)= I/4X/(2) and hence 

1 f® (cosh u -  1) . 
12(O) = "--'---'~ J0cr(0/+ (cosh u + a) 3/2 ou 

after using [AI6] to show that 

Lastly, if 

then 

f f  cosh u -  1 1 f® du ,r 
(cosh u + 1) 3/2 du = ~ Jo ~ = 2v'(2)" 

. / :~  f® sK',(a) ds 
I3(a) = - v~.'-I l S2 ..~ l • Io ( ~) sinh s,r cosh s*r 

f0  ~ s 
d 2 sK~a) ds 

[(,,2 _ t)I31 = V ( 2 )  s i ~ - - ~  ~ o ~  s,~ = - - - -  

MF VoL 8, No. 4--F 

du 
2it (cosh u + 1)(cosh u + tu) 3/2 
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[A24a] 

[A24b] 

[A25a] 

[A25b] 

[A26] 

[A27a] 
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by [A21]. But [45] and [A20] imply that 13(1) = 1/8~2 and hence, using [A26] again, 

2_ f~  cosh u + ,~),1~ 
( a : - D I s ( a ) = ~ r J o  c o s h u + l  d u - v ' ( 2 )  

After an integration by parts it follows that 

1 fo (cosh u + 1) du X/(2) 
13(a) = "tr(a - 1) (cosh l/Jr O/) 3/2 --  ~----2-'~ l" [A27b] 


